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The electrical behavior of metals is fundamental in any theory 
of electricity and until recently it has been a subject of much 
mystery and dispute. Thus the location of the e.m.f. in the 
galvanic cell has been a matter of controversy since the time of 
Volta and Faraday. Likewise in regard to the so-called “con- 
tact potentials,’’ there were not only differences of opinion as to 
the interpretation but not even general agreement as to the 
experimental evidence. Recent experimental work of Millikan 
(1) and others (2) on the photoelectric effect and the brilliant 
theoretical papers of Schottky (3) and others (4) on the subject 
of electron emission have thrown much light on the problem. 
While we still know less about the structure of metals than 
about any other solid form of matter we can at  least settle some 
of the mooted questions of the past and formulate the problem 
in the case of others. 

THE PHOTOELECTRIC EFFECT AND THE THERMIONIC WORK FUNCTION 

The electrical behavior of metals becomes more intelligible 
if we first get clearly in mind the experimental facts of the photo- 
electric effect. When light is allowed to impinge on the clean 
surface of a metal in a vacuum there is a limiting frequency 
v0 below which electrons are not emitted by the metal even in 
the presence of an accelerating field. Light of higher frequency 
v ejects electrons with a kinetic energy i m ~ 2  = hv - hvo. In 
accord with the Einstein law the work of removing an electron 
from the metal is seen to  be hv,. y o  the limiting frequency varies 
widely for different metals and is evidently one of the most funda- 
mental characteristic properties of a metal. 
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Electrons may be emitted by a metal without the action of 
light. If the metal be heated to temperatures sufficiently high, 
electrons acquire kinetic energy in excess of the quantity hv, and 
escape. This process is analogous to the evaporation of atoms, 
It is beyond the scope of this paper to discuss the phenomena of 
the vaporization of electrons especially as the subject has been 
treated at great length by Richardson ( 5 ) ,  Schottky (3), Dush- 
man (6)  and others (7). By making certain assumptions the 
vapor pressure of electrons from a hot metal may be treated by 
the laws of thermodynamics and the heat of vaporization may be 
calculated by familiar formulae. The value obtained in this way 
appears to be in good agreement with hv, as determined by photo- 
electric measurements (8). This heat of vaporization is usually 
expressed in volts and designated as 9, the “thermionic work 
function.” 

Schottky has analyzed the work of removal of an electron from 
a metal as being due to various effects such as the removal of the 
electron from the “structure” of the metal, the overcoming of 
fields due to a polarization layer a t  the surface and electrical 
image attraction after the electron is through the surface. While 
it is not possible to  measure these effects separately we may sus- 
pect that variation in 9 for different metals is largely due to the 
variation in the first effect. 

According to the current theories of atomic structure the 
peculiar properties of a metal are due largely to the so-called 
free or conducting electrons which are presumably identical with 
the valence electrons. These electrons move in orbits which 
lie for the most part on the outside of the atom or if they do not 
move in orbits they occupy the outermost energy levels in the 
periphery of the atom. When the atom is in the metallic lattice 
these electrons pass from one atom to another without appreciable 
energy change. When the atom is isolated, as in the vapor state, 
the work of removing an electron to  an infinite (practically a very 
short) distance from an atom can be measured by the determin- 
ing the ionizing potential. Obviously in the theory of electricity 
in metals, the ionizing potential (22) of the atom is a still more 
fundamental quantity than the thermionic work function. 
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Presumably if we knew the configuration of the atom we could 
calculate the ionizing potential from Coulomb’s law and simple 
mechanics. At any rate we may assume that the ionization 
potential varies directly as the effective nuclear charge on the 
atom and inversely as some power of the effective radius. Our 
knowledge of atomic structure confirms this generalization. 

Of course when the atoms are packed into a lattice this work 
of removal of the electrons will be considerably changed in 
magnitude. Our knowledge of the mechanics of the lattice 
structure is not sufficient to make any predictions here although 
Born (9) has made progress along this line. It seems clear 
however, that with a better knowledge of atomic structure and 
the dynamics of crystal lattices we should be able to calculate 
the thermionic work function for any metal. In the accompany- 
ing table are given in volts the ionizing potential, photoelectric 
“work function” hvo, and the standard electrode potential 
against hydrogen for the three metals for which satisfactory 
figures for all three quantities appear to be obtainable. 

IONIZINQ I POTENTIAL I ILu0 I Eo 

Na ........................... 5.13 1.7 2.71 
Li ............................ 5.36 2.36 2.96 
Hg.. ......................... 1 10.2 1 4.52 1 -0.80 

The correspondence of the values given is apparent. It is evi- 
dent that the “affinity” of the atom for the “free” electron is 
fundamental in determining the electrical properties of the metal. 
A relative measure of this property is given by various quanti- 
ties such as the ionizing potential of the vapor, the limiting 
frequency of the photoelectric effect or the thermionic work 
function. If the metals be arranged in a series according to the 
values of any of these quantities an order will be obtained which 
will be approximately that of the familiar electromotive series of 
the electrochemist. 

Now if the conducting electrons lie on different energy levels 
in different metals it is clear that when two metals are brought 
in contact, the electrons will tend to pass from one metal to 
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the other the motion being in every case from the metal with the 
smaller value of hu, to the one with the larger value, and this 
process will continue until equilibrium is established. At low 
temperatures where the electrons do not have appreciable kinetic 
energy (10) the result is easily stated. It is a fundamental law 
of electrostatics that a system of electrical charges tends to take 
on a configuration of minimum potential energy. Electrons will 
pass from one metal to the other until the negative potential 
acquired by the metal having the higher value of U, balances 
the difference in the energy levels of the electrons in the two 
metals. 

The transfer 
of electrons is entirely on the surface of the two metals. No 
transfer takes place within the body of the metal and it is im- 
possible to produce or maintain a volume charge within a metal. 
For electrons free t o  move but without kinetic energy it can be 
demonstrated from Coulomb’s law that the net charge on any 
volume in the body of a conductor will not differ appreciably from 
zero if the volume is taken large enough to  contain a consider- 
able number of atoms. Even if the electrons possess kinetic 
energy it has been shown by Lorentz (11) that the concentration 
of electrons in the interior of a metal remains constant and equal 
to the number of positive charges in the same area. It is only 
within a distance from the surface of the metal comparable to the 
atomic diameters that appreciable changes in electron concen- 
tration can be produced even by the application of the highest 
potentials available. 

One very peculiar point needs to be noticed here. 

THE THERMAL EQUILIBRIUM O F  ELECTRONS BETWEEN METALS 

So long as the electrons do not possess an appreciable kinetic 
energy the ordinary laws of electrostatics would suffice to  calcu- 
late the conditions for equilibrium between metals, provided of 
course that we were sufficiently well acquainted with the struc- 
ture of the metals. At higher temperatures where the electrons 
begin to  share in the kinetic energy of the metal the laws of 
electrostatics are no longer sufficient to  determine equilibrium 
but we must make use of thermodynamics. Equilibrium will 
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be established between the electrons of two metals a and b when 
the escaping tendency of the electrons is the same from each 
metal (12). The escaping tendency of any constituent from a 
phase is measured by the partial molal free energy of the con- 
stituent in that phase. The partial molal free energy of the 

bF electrons in a metal is the ratio - where dF is the increase in the dn 
total free energy of the metal on the addition of bn equivalents of 
electrons. Other factors as temperature are constant. Equilib- 
rium between the two metals a and b then may be attained 
either by direct contact or through the vaporization and condensa- 
tion of electrons and the condition for equilibrium is 

bF, aFb 
a n  dn 
- = -  

So far, the condition for equilibrium appears the same as for the 
distribution of a solute between two immiscible solvents but 
certain important differences need to be considered. The ex- 
perimental measurement of the partial molal free energy of a 
constituent of a solution involves the change of concentration of 
that constituent and we do not know of any way to change the 
electron concentration inside a metal, as was pointed out above. 
This does not invalidate the thermodynamic formula however. 
A more serious complication arises because of the charge carried 
by the electron. When we transfer electrons from one metal to 
another we leave a positive charge behind and carry the negative 
charge against the electrostatic attraction and do work so long 
as we increase the separation. This action at  a distance makes the 
case quite different from the separation of a neutral molecule of 
a solute from a solution when the forces cease to act as soon as 
the molecule is separated from the surface of the solution by a 
distance of the order of the molecular diameter. In order to 
take account of the charge of the electron it is necessary to follow 
the method of Gibbs (13) and Schottky (3) and separate the par- 
tial molal free energy into two terms 

bF - - = F - NeV 
dn 
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- 
F is what Gibbs has called the intrinsic free energy corresponding 
to the free energy of a neutral molecule and V is the electrostatic 
potential. N is Avogadro’s number, e the ‘charge on the electron, 
while the minus sign takes care of the negative charge. This 
separation of the free energy into terms involving forces that 
act a t  molecular distances and forces acting a t  greater distances 
seems from one point of view quite arbitrary and meaningless, 
but it is justified by several considerations. V, the electrostatic 
potential, is the same for positive charges as for negative and so 
long as the distribution of charges does not change it is inde- 
pendent of temperature. F on the other hand depends upon the 
potential and kinetic energies of the electron in the lattice, is a 
function of the temperature, and the value for the electron is 
radically different from the value for a positive ion. Finally in 
some cases a t  least the value of V can be measured experimentally. 
The equation (1) for equilibrium of electrons between two metals 
a t  the same temperature then becomes 

- - 
Fa - NeVa = Fa - Nevb (3) 

The metal with the larger value of the thermionic work function 
may be expected to have the lesser value of F ,  lesser being used 
in the algebraic sense. 

THE VOLTA DIFFERENCE O F  POTENTIAL 

The fact that electrons will pass from one metal to another on 
contact was observed by Volta near the beginning of the last 
century. The phenomenon was studied in detail by Lord Kel- 
vin (14). In his method the two metals were made the plates of 
a condenser and an e.m.f. applied between of such magnitude and 
direction that no charge appears upon the condenser. By trans- 
forming equations (3) we have 

It is obvious that the e.m.f. applied in the Kelvin experiment 
must be equal to V b  - V ,  in equation (4) and hence the latter term 
is the Volta difference of potential. Furthermore any tendency 

I 
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to transfer electrons is from the surface of one metal to the sur- 
face of the other; hence the values of pu, p b  involved are the 
values for the metallic surfaces. 

In the discussion of the photoelectric effect we assumed the 
existence of clean metallic surfaces but it is not certain that it is 
possible to obtain such a surface experimentally. Millikan in 
his work on the photoelectric effect of the alkali metals, shaved 
the surface of the metal in a high vacuum, but in the highest 
vacuum obtainable the surface of the metal would in all prob- 
ability be quickly covered with a layer of gas molecules. Prob- 
ably the cleanest surface that has been obtained is that of flowing 
mercury (15). It has already been emphasized that metals 
acquire charges only upon the surface and that in equation (4) 
the values of F ,  and P b  are for the electrons in the surfaces. 
Impurities adsorbed on the surface of a metal affect profoundly 
the values obtained experimentally for yo and the Volta effect 
by the Kelvin method. Moreover, even if clean surfaces are 
obtained it is not likely that the value of F for electrons in the 
surface is the same as for the interior of the metal. Hence the 
Volta effect as measured by the Kelvin method is a superficial 
property of a metal and often without significance. It should 
be emphasized that the Volta effect is a difference of potential 
and not an e.m.f. The e.m.f. is applied by the experimenter. 
The case is analogous to the definition of osmotic pressure, where 
the pressure is one that is imagined to be applied rather than one 
that actually exists. 

CONTACT POTENTIALS 

If two metals are placed in contact without any e.m.f. applied 
between them, the electrons flow from one to the other in the 
direction of decreasing free energy until equilibrium is established 
according to equation (4), the difference in electrostatic potential 
being equal and opposite to the difference in intrinsic free ener- 
gies. Between the surfaces of the metals which are not in con- 
tact there will exist a field due to the potential difference vb - 
V a  where Vb - V a  is numerically equal to the Volta effect. 
This field it should be noted is external to  the metals. 
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F - N e V  

The difference of potential between the interior of one metal 
and the interior of another is given by equation (4) provided 
Fa, and F b  are the values for the interior of the metals. Schottky 
has called this the “galvanic contact potential” and this is the 
true contact difference of potential encountered by a current 
flowing across the junction. It was the opinion of Volta that 
the e.m.f. of a galvanic cell was due to  this difference of potential 
and resided at the junction and this opinion has persisted to the 
present (16). It must be obvious on consideration however that 
this difference of potential is exactly cancelled by the difference 

L 

F J I 
- N e V  

v 

FIQ. 1 

in intrinsic free energies. There is no method known for measur- 
ing this true contact potential although we shall probably be 
able to calculate its value when we know more about the structure 
of metals. 

The persistence of the idea that the e.m.f. of the galvanic cell 
is located at  the metallic junction is probably due to the fact that 
the values of the Volta effect for pairs of metals seem to  corre- 
spond in some cases a t  least to the differences in the standard 
electrode potentials of these metals. While there can be no 
direct relation between the “superficial” Volta effect and the 



THERMAL EQUILIBRIUM OF ELECTRONS IN METALS 263 

electrode potentials it would not be surprising if some parallelism 
were found since both depend upon the fundamental electrical 
properties of the metal. 

In figure 1 are represented diagrammatically the course of the 
values of P ,  - NeV, and the “total” free energy, F -NeV,  for the 
electrons of two metals a and b which are in thermal and electrical 
equilibrium. The value of Fa is less than F ,  and the values of 
Fb and F ,  are assumed to rise near the surface of the metals. 
The value of the total free energy is the same throughout the 
conducting regions of both metals as is required for equilibrium 
of “free” electrons. Hence there can be no e.m.f. at the junction 
of two metals so long as the metals are a t  uniform temperature 
throughout. 

SINGLE ELECTRODE POTENTIALS 

If a piece of metal is brought into contact and equilibrium with 
a solution containing its ions the chemical reaction may be written 

31 $ M+ + electron 

For equilibrium we have 
- 

FLv = F,v+ + NeV,,i + F, - Nev.v (5) 

F ,  is the molal free energy of the metal and F,lf+ and Vsol are 
defined for the ions in solution in the same way that F ,  and V 
were defined for the electrons in the metal. Transforming this 
equation 

It has been commonly assumed that the free energy term on the 
right of equation (6) is of profound significance and many attempts 
have been made to measure Tiaol - TTAIf. On careful consideration 
the importance of this measurement is not so clear, supposing it 
could be made with accuracy. The process actually is the re- 
moval of an atom from the lattice, the transfer of an electron 
from the ion to the surface of the metal and the solvation of the 
ion resulting. This does not appear to be the exact equivalent 
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of one half the reaction in a cell where the electrons are transferred 
from one metal to the other instead of accumulating on the 
surface. 

Granting that this somewhat complicated process is interesting 
it is certain that the accurate measurement of Vs0z - V, presents 
enormous difficulties. We cannot measure the Volta difference 
of potential between two metals with certainty and the measure- 
ment must become still more difficult between a metal and a 
solution. In the former case only neutral molecules are adsorbed 
on the surface but in the latter ions may be adsorbed. Thus the 
hydrogen ion concentration may have a profound effect on the 
value of Va0l-VM. At any rate we have a quantity here which 
will probably be calculated eventually more accurately than it 
can be measured. 

THE TEMPERATURE COEFFICIEST OF CONTACT POTENTIAL 

If we differentiate equation (4) with respect to temperature we 
obtain by well known relations of thermodynamics 

Here a(vb-va) the temperature coefficient of the difference of 

electrostatic potential between the interior of two metals is seen 
to depend upon the respective partial molal entropies of the 
electrons in the interior of the metals. 

THE THREE WAYS OF DEFINING THE HEAT CAPACITY O F  THE 
ELECTRON 

If we differentiate equation (7) a second time with respect to 
as 

the temperature and introduce the relation - dT 

a% a2Fa 1 ac,, acpb 
b y 2  b P  - N e ? ’ ( z  - z) 

C 
an Here is the partial molal heat capacity of 

CP - __ - we obtain 

(8) 

electrons in the 
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metal, a quantity which cannot be measured experimentally 
because we cannot change the concentration of electrons in a 
metal except on the surface and there the change is too small 
to affect the heat capacity measurably. 

Certain of the metals show values for the atomic heat capacity 
considerably above that predicted by the Debye equation. This 
is especially true of the metals with small ionizing potentials, 
such as potassium at ordinary temperatures and of many of the 
metals a t  higher temperatures. G. N. Lewis (17) has attributed 
this abnormally high heat capacity to the presence of electrons 
in an unusually free condition so that they share in the equiparti- 
tion of energy. We may designate this excess heat capacity over 
the normal value as Ce, the “apparent heat capacity of the elec- 
trons in the metal.” 

If a current flows along 
a wire in a thermal gradient, in addition to the joule heating there 
is a small heat effect that is proportional to  the quantity of elec- 
tricity which flows, and to the temperature change. If the 
current is reversed the heat effect is reversed. This is called 
the Thomson effect u and may be defined as the heat absorbed 
per equivalent per degree rise in temperature when the electron 
current flows from a lower to higher temperature.1 

Before we can discuss the possible relations of these heat 
capacities defined in different ways it is desirable to discuss the 
application of thermodynamics to the thermocouple. 

Finally there is the Thomson effect. 

THE THERMOCOUPLE AS A CARNOT CYCLE 

If we neglect the irreversible flow of heat which always takes 
place in a thermal gradient because of the conductivity af matter, 
we may treat a thermocouple whose junctions are a t  different 
temperatures as a Carnot cycle. Whether we are justified in 
this procedure, in other words, whether the laws of thermodynam- 
ics apply strictly to thermocouple or not, is a question which 
has never been settled although most writers on the subject have 
inclined to the affirmative. The matter cannot be settled by 

l The Thomson effect has usually been defined for a positive current. 
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an experimental check because the heat quantities involved are 
too small to  memure with accuracy. It may be pointed out that 
no Carnot cycle can be carried out without some irreversible flow 
of heat for we have no perfect insulators. In the ordinary Carnot 
cycle, however, the thermal gradient may be assumed to  be 
external to the mechanism while in the thermocouple the elec- 
trons move through the thermal gradient. For purposes of 
discussion in the remainder of this paper we shall assume that 
the thermocouple may be treated as a Carnot cycle. 

Let us consider a circuit of two metals a and b in a temperature 
gradient with one junction a t  the temperature T and the other 
junction at  the temperature T+dT. Assuming the electrons to 
flow from a to  b at the warmer junction then the net electromotive 
force ofhthe circuit dE in the direction of the electron current is 
given by the First Law as 

Ne dE = q2 - 41 + (0. - ub)dT (9) 

Here qz and q1 are the heats absorbed at  the warmer and colder 
junctions respectively when one equivalent of electrons flows from 
a to b and ua, Ub are the Thomson effects. By the Second Law: 

(10) 

T being the temperature of the warmer junction. The Thomson 
effects do not appear in the above equation since they would be 
of second order. Differentiating (10) with respect to T and 
combining with (9) we have 

&E 1 
bT2 T Ne - = - (cb - UJ (11) 

We shall use this equation in the next section. 
It is important to note that in equation (10) there is no in- 

formation as to the numerical value of an e.m,f,, E,  which many 
writers have assumed to  exist at  the junction. Here q is the 
reversible heat and it is well known that in the analogous case 
of a chemical reaction the reversible heat of a reaction bears no 
relation to the free energy. Nevertheless the list of writers who 
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have sought t o  set p equal to E contains some of the distinguished 
names of science. Furthermore it should be noted that the exist- 
ence of a reversible Thomson effect does not imply the existence 
of an e.m.f. along the gradient. The laws of thermodynamics 
giveonlythe total e.m.f. of the circuit without giving us any specific 
information as to the way this e.m.f. is distributed. 

One inference however, may be drawn as to the relation be- 
tween the Peltier heat, q, and the e.m.f. a t  the junction. If we 
were to tabulate the reversible heats for a number of chemical 
reactions, while there would be no correlation we should expect 
that the reversible heats would be on the average of the same order 
of magnitude as the free energies. It has been a source of con- 

I 

/ I T  

FIG. 2 

cern to many writers that the values of p, as calculated from meas- 
urements of thermoelectric force, were so small compared with 
the Volta difference of potential. This ceases to  be a matter of 
concern when we recognize that the Volta effect has no relation 
to the e.m.f. at the junction of two metals. 

A POSSIBLE CORRELATION O F  THE THERMOELECTRIC POWER WITH 
THE “TRUE” CONTACT DIFFERENCE OF POTENTIAL 

Let us consider two blocks each of metals a and b, designated 
as a, a’ and b, b’; a and b are a t  the temperature T and a’ and b’ 
at the temperature T + dT. Suppose each of the four pieces of 
metal to be electrically neutral and at  the same electrostatic 
potential V.  The values of the intrinsic free energies will be 
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- 
- -  bFa 
Fa, Fa andF.‘ = F a  + -dT, Fa’ = F B  + 9 dT. Now suppose a, aT bT 
a’ and b, b’ to be joined by thin wires of the respective metals 
a and b. These wires will be in the temperature gradient. Let us 
assume that no transfer of electrons takes place along the wires. 
The plausibility of this assumption we will discuss later. If there 
be no tendency for electrons to move along the temperature 
gradient then we may suppose that no work will be required to 
move electrons along the wires. Let us imagine a transfer of N 
electrons to take place around the circuit a a’ b’ b. If the 
electrostatic potential is the same throughout the only work 
involved will be in the transfer of the electrons across the gaps 
a’ b’ and ba. The net work is seen to be 

If we differentiate this equation with respect to  T and combine 
with (8) and (11) we have 

bCpb bcpm - 
an an - a - urn 

- _ -  

From this equation we may infer that2 

= a  
ac,. - 
bn 

(13) 

(14) 

Latimer (19) in an interesting paper has attempted to  correlate 
the values of Ce the apparent heat capacity of the electrons with 
Q but the experimental data he considers do not give a very 
satisfactory correlation. His conclusion would also imply that 

Ce is equal to 2 if equation (14) is true. If we consider the case 

of a solution as an analogy the partial molal heat and the apparent 
molal heat only have the same values in general in case the 
solution is thermodynamically “perfect.” 

bC 
bn 

* Schottky (3) has demonstrated equation (14) by a different process of rea- 
soning but making similar assumptions to those made here. It may be noted 

6CP that  the author (18) had previously called attention to the possibility that  - 
673 

and u were identical. 
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None of the above conclusions are true of course unless our 
assumption that no variation of electrostatic potential exists 
along a wire in a temperature gradient is correct.3 This assump- 
tion appears very improbable. We can prove nothing from 
thermodynamics since the relations of the free energies are with- 
out significance unless the system is a t  constant temperature and 
recent work on the Soret effect (21) throws no light on the laws 
of equilibrium in thermal gradients. No doubt the values of 
Fa and P,’ in the interior of the metal will be the same after a 
and a’ are connected as before because the electron concentration 
will be the same but the movement of electrons along the wire 
will produce charges on a and a’ which will alter the potentials 
V ,  and V,‘ and similarly for L7, and Vb’. Assuming that equilib- 
rium has been reached along the thermal gradients so that no 
e.m.f. need be considered except between metals as before we 
should have for the work of transfer of electrons around the circuit 

bvb bvo - - is different from zero equation (12) does not hold. If bt bt 
Furthermore it should be emphasized that no conclusions may 
be drawn as to the location of the e.m.f.’s in the thermocouple 
because of our lack of knowledge of the conditions for equilibrium 
along a gradient. The second law if it applies at all gives us 
information only as to the net e.m.f. of the whole circuit. 

One more point needs to be emphasized. It has been coni- 
monly stated the thermoelectric power is the temperature 
coefficient of the contact difference of potential. If equation 
(12) is true then the thermoelectric power is the temperature co- 
efficient of the “true” contact difference of potential which 
cannot be measured experimentally. If equation (12) is not 
true then there is no relation apparent between thermoelectric 
power and the contact potential. 

Compton (20) attempted to  determine the relative charge a t  two ends of a 
wire in a thermal gradient and got a very large effect. It is likely that the adsorp- 
tion of gas on the surface of the metal affected the results here as in most measure- 
ments of this kind. 
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